

 Swinburne University of Technology | CRICOS Provider 00111D | swinburne.edu.au

Swinburne Research Bank
http://researchbank.swinburne.edu.au

Zhao, X., & Liu, C. (2007). Version management in the business process change
context.

Originally published in Proceedings of the 5th International Conference on
Business Process Management (BPM 2007), Brisbane, Australia, 24–28

September 2007.
Lecture notes in computer science (Vol. 4714, pp. 198–213). Berlin: Springer.

 Available from: http://dx.doi.org/10.1007/978-3-540-75183-0_15

Copyright © Springer-Verlag Berlin Heidelberg 2007.

This is the author’s version of the work, posted here with the permission of the
publisher for your personal use. No further distribution is permitted. You may also be
able to access the published version from your library. The definitive version is
available at http://www.springerlink.com/.

Version Management in the Business Process Change
Context

Xiaohui Zhao and Chengfei Liu

{xzhao, cliu}@ict.swin.edu.au
Centre for Information Technology Research

Faculty of Information and Communication Technologies
Swinburne University of Technology

Melbourne, Australia

Abstract. The current business endures a fast changing environment, which
drives organisations to continuously adapt their business processes to new
conditions. In this background, the workflow version control plays an important
role for the change management of business processes. To better handle the
versions of evolving workflow process definitions, a new versioning method is
introduced in this paper. To capture the dynamics of the workflow evolvement,
we propose a novel version preserving directed graph model to represent the
run time evolvement of a workflow process, and devise a series of modification
operations to characterise workflow updating on the fly. The extraction of
workflow versions from a version preserving graph is also discussed with two
different extraction strategies. Particularly, our method allows the execution of
multiple workflow instances of different versions within a single graph, and
supports the evolvements initiated by temporary changes.

1 Introduction

Current varying market opportunities are commented as “Change has become the only
certainty.” [1] in nowadays business globalisation background. To stay efficient and
effective in such a turbulent environment, organisations are required to adapt their
structures and business processes to new conditions continuously [2, 3]. As a
response, organisations are seeking for new facilitating technologies to manage their
dynamic, expanding and changing business processes [4, 5].

Technically, this trend puts challenges to the issues such as business process
updating, instance updating, version control etc. A frequently changing workflow
process definition requires dynamic updating without suspending related running
workflow instances. Further, a running workflow instance needs to keep up with the
changed process definition by evolving to the latest version on the fly. In this
scenario, some temporary and parallel changes may cause a lot of workflow variants
which will result in various versions of workflow process definitions and their
workflow instances. As such, some innovative version management mechanism is in
great demand to harmonise the various versions of workflow processes and instances.

2 Xiaohui Zhao and Chengfei Liu

The previous work [6] done with other colleagues particularly focused on the
handover of the running instances from an old workflow model to a new model, i.e.,
between only two versions. While, this paper concentrates on the version management
in the context of multiple changes to business processes. A novel version preserving
directed graph (VPG) model is proposed to represent the version evolution of a
workflow process definition, and support the execution of workflow instances
belonging to different versions within the same graph. A set of run time modification
operations are developed for this VPG model, to support the dynamic updating to a
workflow process definition. Two strategies for extracting a workflow process
definition of a given version from a VPG are illustrated with formal algorithms,
together with a performance analysis.

The remainder of this paper is organised as follows, Section 2 discusses the version
issues in workflow process evolvements with a motivating example; a version
preserving directed graph model is presented in Section 3, to support business process
changes; strategies for dynamically extracting a workflow process definition of a
given version are addressed in Section 4, together with a performance analysis on
different strategies; Section 5 lists the work related to business process change
management, and discusses the advantages of the proposed method; conclusion
remarks and future work are given in Section 6.

2 Motivating Example

In this section, we use a production business process to demonstrate the process
evolvement. The contextual scenario is that a factory owns several pipelines, and at
the beginning, each pipeline follows the same workflow process shown in Figure 1
(a). Here, we see that the production process includes several activities: production
scheduling, production using a work centre, i.e., work centre #1, quality checking and
final packaging. To meet the soaring market demands, the factory may add a parallel
work centre, for example work centre #2, to each pipeline for the purpose of
increasing the production capability. In this case, the original workflow process
upgrades to the one shown in Figure 1 (b).

As this workflow process is shared by multiple pipelines, the workflow process
may have variants for different pipelines due to practical situations. For example,
sometimes work centre #1 of a pipeline, say pipeline A, may come across a technical
malfunction, and therefore has to be removed from the pipeline for maintenance.
Here, we suppose that pipeline A attempts to keep the production output by fixing
unqualified products at the absence of work centre #1. Therefore, the workflow
process will evolve to the one shown in Figure 1 (c), accordingly.

While for other pipeline, for example pipeline B, its work centre #1 may also
endure a temporary maintenance, yet it uses manual labour to replace its work centre
#1. In this case, the workflow process will evolve to the one shown in Figure 1 (d).
Afterwards, a technical upgrading to the work centre #2 of all pipelines may improve
the product quality, and the products made by work centre #2 are thus not required to
pass the quality checking. Due to the upgrading benefit, the workflow process for
other pipelines, except pipeline A and B, will evolve from Figure 1 (b) to Figure 1 (e),

Version Management in the Business Process Change Context 3

whlist for pipeline B, the workflow process will evolve from Figure 1 (d) to Figure 1
(f). Further, when work centre #1 of pipeline B comes back from maintenance, the
workflow process for this pipeline evolves to the one shown in Figure 1 (e), as well.

Besides parallel evolvements, a workflow process may possibly go back to a
previous copy. For example, after the workflow process for pipeline A evolves to
Figure 1 (c) and before the upgrading to work centre #2, the workflow process may be
changed back to Figure 1 (b) if work centre comes back to work.

Start

Schedule Production

Work
Centre #1

End

Quality Checking

Packaging

Start

Schedule
Production

Work
Centre #1

End

Quality Checking

Packaging

Work
Centre #2

Start

Schedule
Production

Manual
Production

End

Quality
Checking

Packaging

Work
Centre #2

Start

Schedule
Production

Work
Centre #1

End

Quality
Checking

Packaging

Work
Centre #2

(a) (b)

(d) (e)

Start

Schedule
Production

Manual
Production

End

Quality
Checking

Packaging

Work
Centre #2

(f)

Start

Schedule
Production

Fixing Unqualified
Products

End

Quality Checking

Packaging

Work
Centre #2

(c)ver 1.0 ver 1.1

ver 1.1.2 ver 1.2.2ver 1.2

ver 1.1.1

Fig. 1. Workflow process evolvement example

From this example, we see that a workflow process may not simply go along a linear
evolvement. In fact, the actual evolvement is driven by many factors, such as unit
replacement, technology shift, external changes, etc. Some of these factors, for
example, unit replacement and external changes, may only cause temporary changes
of a workflow process. While, some factors, such as technology shift etc., may cause
permanent changes. Nevertheless, static workflow process definitions are not
acceptable in such evolvement scenarios, and more supports for dynamic evolvement
representation and description are highly needed. In such a business process change
context, the workflow version is a direct indicator for the variants of an evolving
workflow process, and therefore the representation and manipulation of workflow
versions are of significant importance to assist business process changes. Here, we
summarise the requirements for version supports as follows:

4 Xiaohui Zhao and Chengfei Liu

• Version representation. A version representation method is expected to clearly
depict the evolvement relation and dependency between versions of a workflow
process definition.

• Version transformation. A set of modification operations are expected to transform
a workflow process definition from one version to another on the fly.

• Version compatibility. For a workflow process definition, this denotes the
compatibility that allows the workflow instances of different versions to be
executed at the same time.

• Version extraction. For a workflow process definition, this stands for the process of
dynamically deducing a specific version from a mass of version information during
the execution period. This feature particularly helps the version change of
workflow instances.
The whole lifecycle of business process changes comprises identifying tasks and

links to replace, updating workflow processes, updating running workflow instances,
together with version control and extraction, etc. Some work in adaptive workflow [7-
9] and workflow evolution [10, 11] already addressed the issues of instance updating
and process validation. Yet, to our best knowledge, few efforts have been put on the
workflow version control in workflow process updating. This paper mainly targets at
the process updating and the process version control. A particular versioning method
is proposed to represent workflow process version evolvement; and a version
preserving directed graph model is established to support the dynamic modifications
and transformations of workflow process versions, as well as version compatibility.
Additionally, two version extraction strategies are discussed with performance
analysis.

3 Version Control in Business Process Change Management

This section discusses the version evolvement of workflow process definitions. A
versioning method is proposed for workflow process definitions, and a version
preserving directed graph is used to represent the version evolvement of workflow
process definitions.

3.1 Workflow process version evolvement

Once a workflow process definition is changed, a new version will be assigned to
indicate the changed workflow process definition at this stage. In this way, a
workflow process definition may own several versions during its lifecycle.

Currently, there are few standards specifying the versions of workflow process
definitions. Some workflow products [12, 13] simply use the incremental numbering
system that is widely used in the software development area, for versioning workflow
process definitions. In such a versioning system, different numbers denote different
versions, and dots separate main versions and sub versions [14]. Though this
numbering system can well represent the inheritance relation in software

Version Management in the Business Process Change Context 5

development, yet it fails to represent some sporadic changes of a workflow process,
where the inheritance relation does not exist between versions.

In contrary to the software development, a workflow process definition may evolve
along two axes, i.e., the process improvement and the temporary adaptation. The
process improvement denotes the permanent evolvement of a workflow process
definition driven by technology upgrading or strategy changes; while the temporary
adaptation denotes the variation of the workflow process definition driven by unit
replacements or other sporadic reasons.

Here, we propose a new versioning method to represent the evolvement of a
workflow process definition along the above two axes.

A version of a workflow process definition is defined as a three-digit string
separated by dots, x.y.z, where,

− the first digit x denotes the major version of the workflow process definition;
− the second digit y denotes the minor version of the workflow process definition;
− the third digit z denotes the temporary variation of a workflow process definition.

The first two digits represent the progress of the process improvement; while the
last digit denotes the temporary variation of a workflow process definition.

Figure 2 illustrates the version evolvement of the workflow process definition
example discussed in Section 2, along the two axes.

1.0 1.31.21.1

1.1.2

1.1.1

1.2.2

1.2.3

Process Improvement

Temporary
Adaptation

 Mapping
version Wf process

1.0 Figure 1(a)
1.1 Figure 1(b)

1.1.1 Figure 1(c)
1.1.2 Figure 1(d)
1.2 Figure 1(e)

1.2.2 Figure 1(f)
… …

Fig. 2. Workflow process evolvement figure

In Figure 2, the horizontal axis denotes the process improvement, and the vertical axis
denotes the temporary adaptation. The mapping table illustrates the relation between
versions and corresponding workflow process definitions. Here, we name the start
version as the base version for all other versions. In Figure 1, version 1.0 is the base
version. For version v, a version that contains a larger number for at least one of the
first two digits and the other is no less than v’s counterpart is called v’s subsequent
version. For examples, versions 1.2, 1.2.2 are subsequent versions of version 1.1

In Figure 2, each arrow represents an evolvement from one version to another. For
any version, there always exists a path leads from the base version to this version in
this evolvement figure. Take version 1.2.2 as an example, the evolvement starts from
base version, 1.0, to 1.1, then arrives to 1.1.2, and finally to 1.2.2. As discussed in the
motivating example, a workflow process may have multiple evolvement branches. A
good example is that from version 1.1, it has three possible evolvement branches, i.e.,

6 Xiaohui Zhao and Chengfei Liu

to version 1.2, to version 1.1.1 and to version 1.1.2. Choosing which route is
dependant on the actual situation.

3.2 Version preserving directed graph

Although a workflow process definition may change frequently, we need to minimise
the effect to the execution of its workflow instances. Our primary intention is to keep
the nodes and arcs of all the versions belonging to the same workflow process
definition in a single graph. Figure 3 shows an example of such a graph according to
the production workflow process discussed in the previous section. In this graph, each
node represents a workflow task, and the versions of nodes and arcs are marked aside
as labels.

n6n5

s

t

n4

n3

n2

n1

1.0

1.0

1.0

1.0

1.0

1.1

1.1

1.1

a3
1.1.2

1.1.2

a9
1.1.2

1.2

a1

a2

a4
a5

a6

n7

a7
1.1.1

a8
1.1.1

Legend

Graph nodes Workflow tasks
s Starting task

n1 Schedule Production
n2 Work centre #1
n3 Quality checking
n4 Packaging
n5 Work centre #2
n6 Manual production
n7 Fixing unqualified products
t Terminating task

Fig. 3. An example of VPG

Obviously, there may exist exclusive branches between different versions. For
example, from node n5 in Figure 3, a workflow instance of version 1.1 is only
allowed to go through arc a5, yet a workflow instance of version 1.2 or 1.2.2 can only
go through arc a6. In this situation, we call that arc a5 and arc a6 are in an exclusive
relation.

In this methodology, we extend the conventional directed graph with
enhancements for version control to model workflow process definitions in the
business process change context. In particular, a version set, a version mapping and a
binary relation are designed for the version preservation purpose. We name the
extended graph as a version preserving directed graph (VPG).

A VPG for a workflow process p, can be defined as a tuple (N, A, V, f, R), where,

− N is the set of nodes, where each node v ∈ N, represents a workflow task of p.
Additionally, there must exist one and only one starting node s ∈ N, whose
incoming degree is 0; and one and only one terminating node t ∈ N, whose
outgoing degree is 0. This means that a workflow process must have one and only
one starting task, and one and only one terminating task;

Version Management in the Business Process Change Context 7

− A is the set of arcs, where each arc a ∈ A, represents a link connecting two
workflow tasks of p;

− V is the set of version numbers, such as “1.1”, “1.2”, “1.2.2” etc.;
− f : N∪A→V is a mapping, which assigns proper version number to each node and

arc in the graph;
− R is a binary relation { (a1, a2) | a1, a2 ∈ A Λ a1 and a2 are in the exclusive

relation }. With this binary relation, the exclusive relation between the arcs in a
VPG can be easily represented. Note, here R only records the exclusive relation
that are caused by versioning, not by business constraints.
In general, this graph keeps the version information in mapping f, stores the

exclusive relation between arcs using relation R , and represents the workflow
structure with nodes and arcs.

Particularly, the VPG model tries to minimise the information to store, by dropping
all deducible information. For example, arc a6 marked version 1.2 in Figure 3,
represents the evolvement triggered by work centre #2’s upgrading, which can be
shared by the workflow processes of version 1.1.2 and version 1.1. Therefore, there is
no need to create a new arc (exclusive to a6) from n5 to n4 with version 1.2.2. We
will see that the workflow process definition of version 1.2.2 is deducible from the
information for versions 1.0, 1.1, 1.2 and 1.1.2.

Based on the VPG for a specific workflow process, we can determine different
versions for different workflow instances at any time during the execution, by
following three rules:

Rule (1) Version v cannot include the arcs and nodes with v’s subsequent versions.
Rule (2) The arcs and nodes with the version in the form of x.y.z (z ≠ null) will
not be included in the version in the form of u.v.w, where w ≠ z.

For example, in Figure 3, n1, a1, a5 and a7 etc. are not includable in version
1.0, and a6 is not includable in version 1.1, because of Rule 1. a7, a8 and n7 are
not includable in either version 1.1.2 or version 1.2.2, because of Rule 2.
Rule (3) The selection of an arc, with regards to the version in the form of x.y.z,
from the set of arcs with an exclusive relation, is subject to the order of its version
in the following priority list:
1. versions in the form of x.y.z;
2. versions in the form of u.v.z (u ≠ x or v ≠ y);
3. versions in the form of x.y;
4. versions in the form of x.v (v < y, v is the closet to y);
5. versions in the form of u.v (u < x, u is the closest to x, or v is the largest if u is

the same).
The arcs with a version that is not listed in the priority list will not be

considered.
For example, arcs a2, a3 and a7 are in an exclusive relation in Figure 3. For

version 1.2.2, the selection priority is a3>a2, while a7 is not considered.

8 Xiaohui Zhao and Chengfei Liu

3.3 Run time operations

Obviously, it is unacceptable to suspend all running workflow instances for updating,
thus all modifications are required to perform on the fly. Furthermore, such run time
modifications are expected to be information preserved for previous versions. This is
required to guarantee the consistency between workflow instances and the log
information that is maintained by a workflow management system. The log records
may have used the workflow process definition of previous versions, and the
information about all these versions should be preserved. The loss of previous version
information may disable the restoration of a workflow process back to a previous
version after a temporary change.

In short, a run time modification operation should be dynamic, information
preserved and restorable. In Table 1, we list the node modification operations, which
satisfy all the three requirements.

Table 1. Node modification operations

Node modification operations
Add a node

Sequential inserting Parallel inserting Remove a node Replace a node

n1

b

n3

n2

a0

a1

a2

n1

b

n3

n2

a1

a2

n1

n3

n2

a0

a1

n1

b

n3

n2

a1

a2

a0

b→N ;
create arc a1= (n1, b),
a2=(b, n2);
a1→A ; a2→A ;
“1.1”→V ;
(a1, “1.1”)→f ;
(b, “1.1”)→f ;
(a2, “1.1”)→f ;
(a0, a1)→R

b→N ;
create arc a1=(n1, b),
a2=(b, n3);
a1→A ;
a2→A ;
“1.1”→V ;
(a1, “1.1”)→f ;
(b, “1.1”)→f ;
(a2, “1.1”)→f

create arc a1=(n1, n3);
a1→A ;
“1.1”→V ;
(a1, “1.1”)→f ;
(a0, a1)→R

b→N ;
create arc a1= (n1, b),
a2=(b, n3);
a1→A ; a2→A ;
“1.1”→V ;
(a1, “1.1”)→f ;
(b, “1.1”)→f ;
(a2, “1.1”)→f ;
(a0, a1)→R

In this table, each operation is illustrated by an example graph, where the boldfaced
nodes or arcs denote the appended components of latest version, say 1.1 in this
example, and an inclined angle between two arcs stands for the exclusive relation
between these two arcs. Below each example graph, the corresponding codes are
given for the modification operation.

Table 2 lists the arc modification operations.

Version Management in the Business Process Change Context 9

Table 2. Arc modification operations

Arc modification operations
Add an arc Replace an arc Remove an arc

n3

n1

n4

n2
a1

n3

n1

n4

n2 a1

a0

n3

n1

n4

n2
a1

a0
a2

create arc a1=(n2, n3);
a1→A ;
“1.1”→V ;
(a1, “1.1”)→f

create arc a1=(n1, n4);
a1→A ;
“1.1”→V ;
(a1, “1.1”)→f ;
(a0, a1)→R

create arc a1=(n2, n3);
A2→A ;
“1.1”→V ;
(a1, “1.1”)→f ;
(a0, a2)→R
(a1, a2)→R

In operation “remove an arc”, as for the arc to remove, i.e., a0, its starting node, i.e.,
n2, must own more than one outgoing arc, to avoid a dead result node. In the example
diagram, we see that a0 is first replaced by a new arc a2, and a2 in turn replaces an
existing outgoing arc a1. Because a2 also links n2 to n3, it is equivalent to a1, but
with different version. The result of this operation is equal to replace a0 with an
existing arc.

3.4 Updating a VPG

A VPG is updated without actual removal of any nodes or arcs, and it can preserve the
information of previous versions in the same graph. There are two rules for updating a
VPG with the discussed modification operations.

Rule (4) Horizontal evolvement. An evolvement from version x.y1.z to version
x.y2.z (y1 ≠ y2) is projected to an evolvement from version x.y1 to x.y2.
 This rule means that all parallel horizontal evolvements can be represented by
an evolvement along the process improvement axis, which indicates the permanent
change to all parallel branch versions. This mechanism caters for the purpose of
reusing versions.
Rule (5) Vertical evolvement. For two evolvements from version x.y to x.y.z and
from x1.y1 to x1.y1.z1 (z, z1 ≠ null, x ≠ x1 or y ≠ y1), respectively, z = z1, if the
two evolvements are caused by the same temporary change; otherwise z ≠ z1.
 This rule means that the third digit of a version identifies the reason for the
evolvement along temporary adaptation axis.
Consider the production workflow process discussed in Section 2. The initial

workflow process can be represented as a VPG shown in Figure 4 (a), where all nodes
and arcs are marked as version 1.0. When the workflow process evolves to version 1.1

10 Xiaohui Zhao and Chengfei Liu

as an additional work centre is inserted, the VPG will be updated to Figure 4 (b) with
an “insert a parallel task” operation. The inserted arcs and nodes, i.e., a1, a5 and n5,
are marked with version 1.1, according to Rule 4. Following this, when the workflow
process for a pipeline evolves to version 1.1.1 as task “work centre #1” is replaced by
task “fixing unqualified products”, the VPG will be updated to Figure 4 (c) with an
“replace a task” operation. The added arcs and nodes, i.e., a7, a8 and n7, are marked
with version 1.1.1. While, the workflow process for another pipeline may replace task
“work centre #1” with “manual production”, and therefore evolves to version 1.1.2
with the VPG shown in Figure 4 (d). The added arcs a3 and a9 and node n6 are
marked with version 1.1.2. Thus, we see that these two versions are marked
differently at digit z, because their evolvements are initiated by different temporary
changes, according to Rule 5.

s

t

n4

n3

n2

n1

1.0

1.0

1.0

1.0

1.0

n6n5

s

t

n4

n3

n2

n1

1.0

1.0

1.0

1.0

1.0

1.1

1.1

1.1

a3
1.1.2

1.1.2

a9
1.1.2

1.2

a1

a2

a4
a5

a6

n7

a7
1.1.1

a8
1.1.1

n5

s

t

n4

n3

n2

n1

1.0

1.1

1.1

1.0

1.0

1.0

1.0

n5

s

t

n4

n3

n2

n1

1.0

1.0

1.0

1.0

1.0

1.1

1.1

1.1

a1

a2

a4 a5

n7

a7
1.1.1

a8
1.1.1

n7

s

t

n4

n3

n2

n1

1.0

a7
1.1.1

a8
1.1.1

1.0

1.0

1.0

1.0

n5

a1

a5

1.1

1.1

n6

a9
1.1.2

a3
1.1.2

1.1.21.1

a1

a5

a2

 (a) (b) (c) (d) (e)

Fig. 4. VPG samples

When handling the evolvement to version 1.2.2, we need to note that arc a6 is added
by a “replace an arc” operation, as shown in Figure 4 (e). According to Rule 4, a6 is
marked with version 1.2 instead of 1.2.2. This denotes that the insertion of arc a6
represents a permanent change rather than a temporary change. Though there are no
nodes or arcs marked with version 1.2.2 in Figure 4 (e), version 1.2.2 can be obtained
by aggregating the arcs and nodes of version 1.2 and 1.1.2. In this way, the stored
information can be maximally reused, and in turn, a better space efficiency is
obtained.

As a VPG records the key changes during evolvements of a workflow process, its
arcs and nodes cover all possible combinations of workflow evolvements. For
example, we mentioned that version 1.2.2 can be deduced from the VPG, even
version 1.2.2 does not appear in the VPG at all. This feature reflects the strong
expression ability of the VPG, as it can deduce any version that exists in the real
evolvement situation. In addition, a VPG can also deduce any version that is
achievable during evolvements of it workflow process definition. For example,
version 1.2.1 is achievable so it can also be deduced from the VPG in Figure 4 (e).

Version Management in the Business Process Change Context 11

4 Runtime Version Management

A VPG contains the information of different versions of a workflow process
definition. However, many workflow management operations, such as initiating
workflow instances, reviewing workflow processes, etc., only refer to a workflow
process definition of a specific version. This requires the capability of dynamically
extracting a workflow process definition of a specific version from the changing
VPG.

Basically, the extraction can be achieved with two different strategies, viz.,
backward assembling and top-down exploration. The following two sections are to
discuss these two strategies, respectively.

4.1 Backward assembling strategy

The most direct strategy is to start with the nodes and arcs with the requested version,
or the closest to the requested version if the requested one does not exist in the VPG.
Then, it continues with searching and assembling the nodes and arcs with versions in
the priority list discussed in Rule 3 of Section 3.2, in a descending order.

Before collecting the nodes and arcs of the next highest priority, we need to delete
all arcs that are in an exclusive relation with any collected arc. This removal may
result in some unreachable nodes, i.e., nodes with no incoming arcs. These
unreachable nodes need to be deleted, and in turn, we need to remove those arcs
connect to these nodes.

This collecting and removing process keeps running until all arcs or nodes with the
versions on the priority list are handled. For example, suppose we extract a workflow
process definition of version 1.2.2 from the VPG shown in Figure 4 (e). According to
the priority sequence, version 1.1.2 holds the highest priority among all the versions
contained in the VPG. Thus, we first collect all arcs and nodes with version 1.1.2, viz.
arc a3, a9 and n6. Afterwards, we find that arcs a7 and a2 are in the exclusive relation
with a collected arc a3, therefore a2 and a7 are removed from the VPG. Thereafter,
nodes n2 and n7 are deleted as they become unreachable, and then arcs a4 and a8 are
deleted too for the same reason. After that, arc a6 is collected, as version 1.2 holds the
highest priority in the remaining VPG, while arc a5 is removed due to its exclusive
relation with a6. The workflow process definition of version 1.2.2 will be obtained
after we handle the nodes and arcs of the base version, i.e., version 1.0. Algorithm 1
formalises the extraction procedure under this strategy.

In this algorithm, Function relatedArcs(G , ASet) returns the set of arcs that are in
an exclusive relation with the arcs in set ASet in VPG G; Function in(G , n) returns
the in-degree of node n in VPG G ; Fucntion outArcs(G , n) returns a set of node n’s
outgoing arcs in VPG G ; Function linkedNode(G , a); returns the node that arc a
links to in VPG G ; Function highestVer(G , v) returns the version with the currently
highest priority in VPG G with version v.

12 Xiaohui Zhao and Chengfei Liu

Algorithm 1. backward assembling
G - The VPG for a workflow process definition Input
v - The requested version

Output G ′ - The graph for the workflow process definition of the requested
version

1. ATarget = ∅; NTarget = ∅;
2. add the nodes and arcs of version highestVer(G, v) to sets NTemp and ATemp,

respectively;
3. A = relatedArcs(G, ATemp);
4. while (A ≠ ∅) do
5. pick arc a ∈ A
6. n = linkedNode(G , a);
7. if in(n) = 1 then
8. A = AU outArcs(n);
9. delete n from G ;

10. end if
11. delete a from A and G ;
12. end while
13. NTarget = NTargetUNTemp;
14. ATarget = ATargetU ATemp;
15. delete the arcs and nodes in ATemp and NTemp from G;
16. ATemp = ∅; NTemp = ∅
17. if highestVer(G, v) is not null then goto line 2;

18. G ′ = (NTarget, ATarget);

This algorithm uses sets NTemp and ATemp to keep the newly collected nodes and
arcs, respectively. Set A temporarily stores the arcs to be deleted from the VPG. After
picking an arc a in set A, the algorithm will check whether a is the only incoming arc
to its linked node n. If so, node n will be deleted with a from the VPG, and the
outgoing arcs of n will be inserted to set A for future checking. The collected nodes
and arcs will be inserted to the result graph by moving the elements in NTemp and
ATemp to NTarget and ATarget, respectively.

4.2 Top-down exploration strategy

Another strategy is to search for the requested version from the top of a VPG. For
each outgoing arc, if it has a version in the priority list with regard to the requested
version and is not in an exclusive relation with any other arcs, it will be collected. As
to the arcs in an exclusive relation, we need to select one proper arc that owns the
highest priority among the exclusively coupled peers. The arcs and nodes with a
version that is not in the priority list will not be considered at all.

For example, suppose we also extract a workflow process definition of version
1.2.2 from the VPG shown in Figure 4 (e). The extraction process starts from the
starting node s, and then comes to node n1 which has four outgoing arcs, viz., a1, a2,

Version Management in the Business Process Change Context 13

a3 and a7. Here, a1 is not in an exclusive relation with other three arcs, and version
1.1 meets the fourth requirement of the priority with regard to version 1.2.2 (please
refer to Rule 3). Thus, a1 will be first selected. As to the three exclusively coupled
arcs, a3 with version 1.1.2 holds a higher priority than the other two peers, a2 with
version 1.0 and a7 with version 1.1.1. Thus, only a3 is selected, while a2 and a7 are
not considered. This process goes on as the trace flows along the collected arcs, and
finally we can obtain the nodes and arcs for version 1.2.2 when the trace ends at the
terminating node, t. Algorithm 2 formalises the extraction procedure under this
strategy.

In this algorithm, Fucntion outArcs(G , n) returns a set of node n’s outgoing arcs in
VPG G ; Function coulpedArcs(G , n) returns a set of node n’s outgoing arcs that are
in the exclusive relation in VPG G ; Funcntion pickPriorityArc(ASet, v) returns the
arc with the highest priority with regard to version v among set ASet; Function
checkNodes(G , a) returns the set of nodes that arc a links to in VPG G .

Algorithm 2. top-down exploration
G - The VPG for a workflow process definition Input
v - The requested version

Output G ′ - The graph for the workflow process definition of the requested
version

1. NTarget = ∅ ; ATarget = ∅ ;
2. NTemp = { G .s };
3. while (NTemp ≠ ∅) do
4. for each n ∈ NTemp
5. A= coulpedArcs(G, n);
6. ATemp = outArcs(G , n) – A;
7. ATemp = ATempU { pickPriorityArc(A, v) };
8. NTarget = NTargetU { n };
9. end for

10. NTemp = ∅;
11. for each a ∈ ATemp
12. NTemp = NTempU (checkNodes(G , a) – NTarget);
13. end for
14. ATarget = ATargetU ATemp;
15. end while
16. G ′ = (NTarget, ATarget);

This algorithm starts searching from the starting node, s, and collects the
includable nodes and arcs in sets NTarget and ATarget. When the search arrives to the
outgoing arcs of the collected nodes, the algorithm (line 4 to line 9) checks whether
the arcs are collectable by referring to the priority sequence and the exclusive relation.
The search moves on to the nodes to which are linked from the newly collected arcs,
and checks whether these nodes have been collected before to reduce potential
redundant processing. Finally, the search terminates when it arrives to node t.

14 Xiaohui Zhao and Chengfei Liu

4.3 Strategy analysis

Under the backward assembling strategy, the algorithm needs to process most nodes
and arcs. Whiling removing an arc that is in the exclusive relation with a collected
arc, it may result in a chain reaction that may cause the linked node to be with no
incoming arcs, and therefore the removal of this node and all its outgoing arcs. This
process may cover a lot of nodes and arcs in the graph, no matter these nodes or arcs
are really useful for the extraction or not. In fact, for version v, the arcs and nodes
belonging to v’s subsequent versions have nothing to do with the extraction of version
v, because these arcs and nodes only serve for the evolvements occurred after version
v. Additionally, the arcs and nodes belonging to v’s parallel branch versions, offer no
contributions, either. For example, the components for version 1.1.1 do not contribute
to the extraction of version 1.1.2. However, the backward assembling strategy still
processes the components of version 1.1.1 during the extraction of version 1.1.2.

In contrast, the top-down exploration strategy is more intelligent. When the top-
down exploration strategy comes across a splitting structure, it leaves all irrelevant
arcs untouched as long as they are not in the priority list with regard to the requested
version. Thereby, this strategy pleasantly sidesteps the searching with irrelevant nodes
or arcs, and in turn it outperforms the backward assembling strategy. As the version
extraction is a frequent operation for a VPG, this improvement can lead to a
considerable performance gain.

5 Related Work and Discussion

Workflow evolution is the most related to version management. Casati et al., [10]
presented a workflow modification language (WFML) to support modifications of a
workflow model. They also discussed the case evolution policies and devised three
main policies to manage case evolution, viz., abort, flush and progressive. The
proposed language contains declaration primitives and flow primitives for the changes
of workflow variables and flow structures.

Work in adaptive workflows, addresses run time modifications for dynamic
exception handling purpose. Hamadi and Benatallah [7] proposed a self-adaptive
recovery net (SARN) to support workflow adaptability during unexpected failures.
This net extends Petri net by deploying recovery tokens and recovery transitions to
represent the dynamic adaptability of a workflow process, and a set of operations are
used to modify the net structure.

In project ADEPTflex [15, 16], Rinderle, Reichert and Dadam did extensive studies
on schema evolution in process management systems, which covered common
workflow type and instance changes, as well as disjoint and overlapping process
changes. Their work formally specified the change operations to both process
schemas and workflow instances, as well as the related migration policies in handling
potential conflicts.

In Sadiq et al.’s work on process constraints for flexible workflows [17], they
proposed the concept of “pockets of flexibility” to allow ad hoc changes and/or
building of workflows, for highly flexible processes.

Version Management in the Business Process Change Context 15

Unfortunately, none of the above work mentions the versions of workflows.
Therefore, they can hardly keep the trail about a series of evolutions and change-
backs, or only support a kind of one-off modifications. The transformation between
subsequent versions or sibling versions is not touched, let alone the compatibility of
multiple workflow versions.

Kradolfer and Geppert [11] presented a framework for dynamic workflow schema
evolution based on workflow type versioning and workflow migration. In their work,
a version tree was proposed to represent the evolvement of a workflow schema, and to
keep track of the resulting history. However, the version tree only provides primitive
supports for version management. Typically, to re-assign a pervious version to a
running workflow instance, this method has to perform a series of inverse
modification operations to achieve that version along the version tree. Yet, in our
VPG approach, the version re-assignment can be easily realised by switching to the
requested version according to the VPG.

In summary, our VPG approach has the following appealing features for business
process change management:
• Dynamic updating

The proposed version preserving directed graph allows dynamic modifications
without suspending running workflow instances. The defined modification operations
preserve all the information during the modification on the fly. We can extract a
workflow process definition of any version at any time. This feature enhances the
flexibility of workflow technology at process level.
• Multiple version compatibility

A VPG allows the co-existence of workflow instances of different versions in a
single graph. With the help of its strong expressive ability, this VPG provides enough
navigation information for a workflow engine to execute these workflow instances.
This feature enhances the flexibility of workflow technology at instance level.
• Compact model

Compared with other work, a VPG is a lightweight graph model for representing
workflow evolvements. With the defined modification operations and proposed rules,
a VPG preserves all information for existing versions, and it can derive a meaningful
version that may not explicitly appear in the graph.

6 Conclusion and Future Work

This paper addressed the version control of workflow process definition in the
business process change context. A versioning method was designed to represent the
workflow evolvement along the axes for both temporary changes and permanent
improvements. A novel version preserving directed graph, together with a series of
run time modification operations, were proposed to update a workflow process
definition on the fly. Strategies on extracting a workflow process definition of a given
version from the corresponding version preserving directed graph were also
discussed. Our future work is to incorporate the handover policies with our version
control method, and provide a comprehensive solution for workflow version control.

16 Xiaohui Zhao and Chengfei Liu

References

[1] Smith, H. and Fingar, P.: Business Process Management - The Third Wave:
Meghan-Kiffer Press, (2003).

[2] van der Aalst, W.M.P., ter Hofstede, A.H.M., and Weske, M.: Business Process
Management: A Survey, In Proceedings of International Conference on Business
Process Management, pp.1-12, (2003).

[3] Khoshafian, S.: Service Oriented Enterprise: Auerbach Publisher, (2006).
[4] Kock, N.: System Analysis & Design Fundamentals - A Business Process

Redesign Approach: Sage Publications, Inc., (2006).
[5] Zhao, X., Liu, C., Yang, Y., and Sadiq, W.: Handling Instance Correspondence

in Inter-Organisational Workflows, In Proceedings of the 19th International
Conference on Advanced Information Systems Engineering (CAiSE'07),
Trondheim, Norway, pp.51-65, (2007).

[6] Liu, C., Orlowska, M.E., and Li, H.: Automating Handover in Dynamic
Workflow Environments, In Proceedings of 10th International Conference on
Advanced Information Systems Engineering, Pisa, Italy, pp.159-171, (1998).

[7] Hamadi, R. and Benatallah, B.: Recovery Nets: Towards Self-Adaptive
Workflow Systems, In Proceedings of the 5th International Conference on Web
Information Systems Engineering, Brisbane, Australia, pp.439-453, (2004).

[8] Kammer, P.J., Bolcer, G.A., Taylor, R.N., Hitomi, A.S., and Bergman, M.:
Techniques for Supporting Dynamic and Adaptive Workflow, Computer
Supported Cooperative Work, vol. 9, pp.269-292, (2000).

[9] Narendra, N.C.: Flexible Support and Management of Adaptive Workflow
Processes, Information Systems Frontiers, vol. 6, pp.247-262, (2004).

[10] Casati, F., Ceri, S., Pernici, B., and Pozzi, G.: Workflow Evolution, Data &
Knowledge Engineering, vol. 24, pp.211-238, (1998).

[11] Kradolfer, M. and Geppert, A.: Dynamic Workflow Schema Evolution Based on
Workflow Type Versioning and Workflow Migration, In Proceedings of
International Conference on Cooperative Information Systems, Edinburgh,
Scotland, pp.104-114, (1999).

[12] IBM: IBM WebSphere Business Integration Handbook (2005).
[13] SAP: SAP Business Workflow and WebFlow Documentation.
[14] Conradi, R. and Westfechtel, B.: Version Models for Software Configuration

Management, ACM Computing Surveys, vol. 30(2), pp.232-282, (1998).
[15] Reichert, M. and Dadam, P.: ADEPTflex -Supporting Dynamic Changes of

Workflows without Losing Control, Journal of Intelligent Information Systems,
vol. 10, pp.93-129, (1998).

[16] Rinderle, S., Reichert, M., and Dadam, P.: Disjoint and Overlapping Process
Changes: Challenges, Solutions, Applications, In Proceedings of 12th
International Conference on Cooperative Information Systems, Agia Napa,
Cyprus, pp.101-120, (2004).

[17] Sadiq, S.W., Orlowska, M.E., and Sadiq, W.: Specification and Validation of
Process Constraints for Flexible Workflows, Information System, vol. 30,
pp.349-378, (2005).

